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ABSTRACT

Motivation: Discovering drug’s Anatomical Therapeutic Chemical

(ATC) classification rules at molecular level is of vital importance to

understand a vast majority of drugs action. However, few studies

attempt to annotate drug’s potential ATC-codes by computational

approaches.

Results: Here, we introduce drug-target network to computationally

predict drug’s ATC-codes and propose a novel method named

NetPredATC. Starting from the assumption that drugs with similar

chemical structures or target proteins share common ATC-codes,

our method, NetPredATC, aims to assign drug’s potential ATC-

codes by integrating chemical structures and target proteins.

Specifically, we first construct a gold-standard positive dataset from

drugs’ ATC-code annotation databases. Then we characterize ATC-

code and drug by their similarity profiles and define kernel function to

correlate them. Finally, we use a kernel method, support vector

machine, to automatically predict drug’s ATC-codes. Our method

was validated on four drug datasets with various target proteins,

including enzymes, ion channels, G-protein couple receptors and

nuclear receptors. We found that both drug’s chemical structure

and target protein are predictive, and target protein information has

better accuracy. Further integrating these two data sources revealed

more experimentally validated ATC-codes for drugs. We extensively

compared our NetPredATC with SuperPred, which is a chemical

similarity-only based method. Experimental results showed that our

NetPredATC outperforms SuperPred not only in predictive coverage

but also in accuracy. In addition, database search and functional

annotation analysis support that our novel predictions are worthy of

future experimental validation.

Conclusion: In conclusion, our new method, NetPredATC, can predict

drug’s ATC-codes more accurately by incorporating drug-target

network and integrating data, which will promote drug mechanism

understanding and drug repositioning and discovery.

Availability: NetPredATC is available at http://doc.aporc.org/wiki/

NetPredATC.
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1 INTRODUCTION

The Anatomical Therapeutic Chemical (ATC) classification

system categorizes drug substances at different levels by their

therapeutic properties, chemical properties, pharmacological

properties and practical applications. This classification system

is recommended by the World Health Organization (WHO), and

drug’s ATC-codes have been widely applied in almost all drug

utilization studies (WHO, 2006). Specifically, ATC classification

system can be used as a basic tool for drug utilization research.

It also provides the presentation and comparison of drug

consumption statistics at international level and will greatly fa-

cilitate the recent drug repositioning and drug combination stu-

dies. Though useful, mapping ATC-codes to drugs is challenging.
Recently, ATC-codes for some well-characterized drugs have

been deposited in databases, such as Kyoto Encyclopedia of

Genes and Genomes (KEGG) Biomolecular Relations in

Information Transmission and Expression (BRITE) (Kanehisa

et al., 2006) andDrugBank (Wishart et al., 2008). These databases

provide high quality expert curated data. However, they are in

small scale, and the coverage is far from enough to serve practical

usage. Even for some well-collected drug datasets, the ATC-code

assignments for drugs are far from complete. For example, the

dataset in Yamanishi et al. (2008) contains drugs with four dif-

ferent type target proteins including enzymes, ion channels (ICs),

G-protein couple receptors (GPCRs) and nuclear receptors

(NRs). These drugs all have manually curated target proteins

from KEGG BRITE (Kanehisa et al., 2006), BRENDA

(Schomburg et al., 2004), SuperTarget (Günther et al., 2008)

and DrugBank (Wishart et al., 2008). Even in this high-quality

dataset, there are 102 drugs that do not have any ATC-codes in

all 445 drugs targeting enzyme, 13 drugs that do not have

any ATC-codes in all 210 drugs targeting IC, 23 drugs that

do not have any ATC-codes in all 223 drugs targeting GPCR,

and 4 drugs that do not have any ATC-codes in all 54 drugs

targeting NR. The percentage of drugs without ATC codes

varies from 10 to 25%.
The bottleneck is that current data collection procedure heav-

ily relies on human curation and is not efficient. One way out is

to learn the underlying ATC classification rules from the avail-

able high quality ATC-code annotations, and further automat-

ically assign new ATC-codes to drugs by a computational

predictor. This strategy will accelerate the functional character-

ization of drugs under the ATC classification systems, especially

those barely characterized drugs. Importantly, it will greatly

speed up the mechanism understanding of a vast majority of*To whom correspondence should be addressed.
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drugs action and narrow down the gap between the medical in-

dications and drug effects elucidation at molecular level (Dunkel

et al., 2008).
However, few studies attempt to address this important prob-

lem. Dunkel et al. tackled this challenge by proposing a compu-

tational method to classify the given compounds into ATC

classification system. Their method is based on the drug similar-

ity in chemical structures and physicochemical properties

(Dunkel et al., 2008). They also developed a useful web-server,

which allows prognoses about the medical indication of novel

compounds and to find new leads for known targets (Dunkel

et al., 2008). Nevertheless, the chemical structure only describes

the static state of drugs. Cells use proteins and small molecules

(drugs, metabolites, or ligands) networks to dynamically coord-

inate multiple biological functions. For instance, single drug may

possess different biological functions by targeting different pro-

teins. Therefore, if the drug target information is integrated into

the prediction, the performance improvement can be expected.

In this article, we follow this idea to design a new predictive

method. That is, we map ATC-codes to a given drug based

not only on its chemical structure similarity with other com-

pounds but also on its target proteins.
The commonly accepted assumption in drug discovery is that

drugs with similar pharmacological or therapeutic properties usu-

ally share common functions (Wang et al., 2010; Yamanishi et al.,

2008, 2010; Zhao and Li, 2010). Existing efforts demonstrated

that chemical structure similarity is useful in classifying com-

pounds into ATC classification system (Dunkel et al., 2008).

Here, we note that drug’s pharmacological or therapeutic similar-

ity may due to the fact that they interact with common or similar

target proteins. Thus, it is reasonable to assume that drugs similar

in target proteins usually share common ATC-codes. Starting

with this assumption, we propose a novel computational

approach called NetPredATC to predict potential ATC-codes

for drugs. Specifically, we first construct the drug and ATC-

code interaction network based on the known drug ATC-code

annotations. Then we characterize ATC-code and drug by their

similarity profiles and define kernel function to correlate drug

with ATC-code. Finally, we infer drug’s ATC-codes by training

a machine-learning model, i.e. support vector machines (SVMs).

SVMs are motivated by statistical learning theory and have been

successful on many different classification problems in bioinfor-

matics (Scholkopf et al., 2004). Our contributions here are not

only in incorporating drug targets information for the first time
into the ATC-code prediction but also in designing a novel pre-

dictive model by data integration.

The performance of our method was validated on four classes

of drug target proteins, including enzymes, ICs, GPCRs and

NRs. We show that both chemical structure and target protein

are predictive via cross-validation experiments and statistical

evaluation. Moreover, target protein information is more power-

ful. By combining them, our method outperforms the chemical

similarity-only based method, and more experimentally observed

drug ATC-code annotations can be uncovered.

2 MATERIALS AND METHODS

We propose a novel computational algorithm, NetPredATC, to infer

drug’s ATC-codes by using drug-target network information. Our algo-

rithm works in three phases (Fig. 1): (i) Formulating known drug’s

ATC annotations as a bipartite graph. We extracted the known drug’s

ATC annotations from KEGG BRITE (Kanehisa et al., 2006) and

DrugBank (Wishart et al., 2008) databases. (ii) Extracting drug–drug

and ATC-code–ATC-code similarity metrics. Drug similarity is derived

from chemical structure and target protein information. ATC-code

similarity profiles are calculated by a probabilistic-based model (Lin,

1998). (iii) Feeding the similarities among drugs and similarities among

ATC-codes to kernel method and applying SVM-based classifier to

predict drug’s unknown ATC-codes.

2.1 Constructing drug and ATC-codes interaction

network

In ATC system, drugs are divided into 14 main groups (first level), with

one pharmacological/theraputic subgroup (second level). The third and

forth levels are chemical/pharmacological/theraputic subgroups, and

the fifth level is the chemical substance. The hierarchical structure of

ATC-codes makes the prediction a hierarchical multi-label classification

problem. Existing models for this problem are complicated and expensive

in computational cost (Cai and Hofmann, 2004; Rousu et al., 2006). This,

thus, greatly restricts the application scope of suchmethods. Here, we pro-

pose a low cost computational method by treating ATC-code prediction

problem as a binary classification problem. Specifically, we construct

drug and ATC-code interaction network based on available drug’s

ATC annotations, which are extracted from KEGG BRITE (Kanehisa

Fig. 1. The scheme of our ATC-code prediction approach for drugs. (A) Formulating known drug ATC-code annotations as a bipartite graph.

(B) Extracting drug–drug and ATC-code–ATC-code similarity metrics. (C) Feeding the similarities among drugs and the similarities among

ATC-codes to kernel method and applying SVM-based classifier to predict the unknown relationships between drugs and ATC-codes
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et al., 2006) and DrugBank (Wishart et al., 2008) databases. That is, by

using the known ATC-codes for drugs, we construct a bipartite graph

(Fig. 1A), i.e. the interactions only exist between drugs and ATC-codes.

In this way drug’s ATC-code prediction can be cast as a binary

classification problem. We aim to determine whether a given drug and

ATC-code pair interacts. The advantage is that we can use a much popu-

lar machine-learning method, SVM, to handle this high-dimensional

learning problem in a relatively low cost way.

2.2 Collecting chemical structure and target protein data

Given two drug ATC-code pairs, we construct a kernel function, which

correlates with their similarity. As kernel function represents the simila-

rities among the training samples in some sense (Hofmann et al., 2008),

we focus on the similarity scores among drugs and similarity scores

among ATC-codes. Therefore, we construct the similarity profiles to

characterize drug and ATC-code in the following subsections.

2.2.1 Chemical structure data It is generally believed that drugs with

similar chemical structures carry out common therapeutic function and

thus likely share common ATC-codes. Therefore, each drug can be char-

acterized by its chemical structure similarity profile with other drugs. The

chemical structure similarity between two drugs d and d 0 is computed by

SIMilar COMPound (SIMCOMP) algorithm (Hattori et al., 2003), which

is a graph-based method for comparing pairwise chemical structures.

Suppose that we have nc drugs in total, a matrix Schem 2 Rnc�nc is then

constructed to represent chemical structure similarity. Each row (or col-

umn) of this matrix is chemical structure similarity profile for a single drug.

2.2.2 Target proteins Our previous drug-target prediction suggests

that drugs with common protein targets often have similar therapeutic

function (Wang et al., 2010, 2011). Thus, drugs interacting with the

same targets are likely to share common ATC-codes. Therefore, here,

we fully take advantage of this feature to represent drugs by its similarity

profile in target proteins with other drugs.

Given two drugs d and d 0, the similarity between them is calculated

as follows:

simðd, d 0Þ ¼ max
gi2TðdÞ, gj2Tðd 0 Þ

simðgj, gjÞ ð1Þ

where TðdÞ and Tðd 0Þ are the sets of target proteins. The sequence data

are applied to measure protein similarity owing to the rapidly developed

sequencing techniques. The sequence similarities among proteins are

defined by a normalized version of Smith-Waterman scores (Smith and

Waterman, 1981). Suppose that we have nc drugs in total, a matrix

Sinter 2 Rnc�nc is then constructed to represent target protein similarity.

Each row (or column) of this matrix is target protein similarity profile for

a single drug.

2.2.3 ATC-code annotations KEGG BRITE (Kanehisa et al., 2006)

and DrugBank (Wishart et al., 2008) databases deposited thousands of

chemical compounds with detailed ATC annotations. Considering the

hierarchical structure of ATC-codes, a probabilistic model (Lin, 1998)

is introduced to calculate the similarity. Specifically, the similarity be-

tween two ATC-codes (ti and tj) is calculated as follows:

simðti, tjÞ ¼ wðtiÞwðtjÞ expð��dðti, tjÞÞ ð2Þ

where dðti, tjÞ is the shortest distance between ATC-codes ti and tj in the

hierarchical structure of the ATC classification system, wðtiÞ and wðtjÞ

represent the weights of the corresponding ATC-codes, and are defined

as the inverse of ATC-code frequencies, which means that more emphasis

was put on specific codes rather than the general ones (Yamanishi et al.,

2010). � is a pre-defined parameter (set to be 0.25 in this study). SATC is

used to denote the resulting drug therapeutic similarity matrix. Each

row (or column) of this matrix is the similarity profile for a single

ATC-code.

2.3 Kernel function for SVM-based predictor and

data integration

With the representation of drugs and ATC-codes by their similarity

profiles, the kernel function for two drug and ATC-code pairs dAtA
and dBtB can be calculated as follows:

KðdAtA, dBtBÞ ¼ ScompðdA, dBÞ � SATCðtA, tBÞ ð3Þ

where Scomp can be SchemðdA, dBÞ, SinterðdA, dBÞ or their combination.

In this article, Chem denotes the case when Scomp ¼ Schem, Inter denotes

the case when Scomp ¼ Sinter, and ChemInter denotes the case when

Scomp ¼ maxðSchem,SinterÞ. Taken together, the rationale behind our

kernel function for drug and ATC-code pairs is that two drug ATC-

code pairs are similar only when the corresponding drugs and ATC-

codes are simultaneously similar supported by different data sources.

2.4 Predicting drug and ATC-code interactions by the

defined kernel function

With the aforementioned kernel function construction scheme, the ATC-

code prediction task is formulated as a classification problem by feeding

the kernel function to SVM. If we treat all drug ATC-code pairs with

known interactions as the training positive samples, and others as the

training negative samples, the training data imbalance problem will arise,

as there are only a relatively small number of known drug and ATC-code

interactions. This will make the SVM ineffective in determining the

class boundary (Wu and Chang, 2003). To maintain a balance between

positive and negative datasets in SVM training procedure, we randomly

select a negative dataset from the unlabeled drug ATC-code pairs with

almost the same size as the positive dataset.

As the kernel function (3) and training dataset are feeding to the SVM

learning scheme, the predictor can be calculated by SVM algorithm.

2.5 Benchmark datasets and SVM implementation

The benchmark drug datasets, used to test the performance of our meth-

od, contain four types of target proteins, i.e. enzymes, ICs, GPCRs and

NRs (Yamanishi et al., 2008). The statistics for these four drug-target

interaction networks are summarized in Yamanishi et al., 2008.

Specifically, the numbers of drugs with known ATC-codes are 343,

197, 200 and 50, which interact with enzymes, ICs, GPCRs and NRs,

respectively. The numbers of corresponding target proteins are 617, 201,

92 and 25 for enzymes, ICs, GPCRs and NRs, respectively. The numbers

of drug-target interactions are 2280, 1422, 593 and 86 in four datasets,

respectively. The numbers of corresponding drug–ATC-code interactions

are 492, 281, 300 and 95 in four datasets (see Supplementary Table S1 for

details).

We train the SVM-based predictor by using LibSVM (Chang and Lin,

2011). To evaluate the performance of our methods, we use 10-fold cross-

validation. In our implementation, the penalty parameter C is optimized

by the grid search approach with 3-fold cross-validation, and the optimal

value of C is 1. The performance of our proposed method is shown by

receiver operating characteristic (ROC) curve (Gribskov and Robinson,

1996), which illustrates the trade-off between the true positive (correctly

predicted interactions) rate with respect to the false positive (wrongly

predicted interactions) rate. Furthermore, the evaluation criteria, area

under the ROC curve (AUC), accuracy (Acc) ¼ TPþTN
TPþTNþFPþFN, sensitivity

(Sn) ¼ TP
TPþFN, specificity (Sp) ¼ TN

TNþFP, precision (Pre) ¼ TP
TPþFP and

F-measure ¼ 2�Sn�Sp
SnþSp , are used to assess the performance. Here, TP is

the number of drug and ATC-code pairs correctly predicted to interact,

FP is the number of drug and ATC-code pairs predicted to interact, but

actually not. TN is the number of drug ATC code pairs that do not

interact and predict correctly. FN is the number of drug and ATC-

code pairs predicted not to interact but actually interact.
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3 RESULTS

3.1 Proof-of-concept example for the motivation of

NetPredATC

In this subsection, we explain the motivation of NetPredATC by

a simple example. Drug D02070, annotated with ‘Homatropine

methylbromide’, is an anticholinergic medication that inhibits

muscarinic acetylcholine receptors and thus the parasympathetic

nervous system. Drug D01297, annotated with ‘Pirenzepine’, is

used in the treatment of peptic ulcers, as it reduces gastric acid

secretion and reduces muscle spasm. It is in a class of drugs

known as muscarinic receptor antagonists-acetylcholine, which

serves the neurotransmitter of the parasympathetic nervous

system to initiate the rest-and-digest state (as opposed to fight-

or-flight). The chemical structures of D02070 and D01297 in 2D

space are shown in Figure 2. The structure similarity between

D02070 and D01297 based on SIMCOMP algorithm is �0.25,

which is relatively low (In the online chemical similarity search

tool http://www.genome.jp/tools/simcomp/, the similar com-

pound will be listed only when the SIMCOMP score is larger

than 0.4). This indicates that two drugs are not similar in struc-

ture at all. The dissimilar structure thus fails the chemical struc-

ture-only based prediction algorithm. However, these two drugs

share one common target: ‘Muscarinic acetylcholine receptor

M1’ (HSA: 1128), which agrees with the therapeutic explanations

of these two drugs. Moreover, these two drugs share a common

ATC-code: A02BX03, annotated with ‘pirenzepine’. This is the

same as the annotation of drug D01297. Taken together, two

drugs dissimilar in chemical structure share common ATC-

code (A02BX03) owing to the fact that they interact with

common target protein (‘Muscarinic acetylcholine receptor

M1’). This example demonstrates that drug-target interactions,

introduced in our method for the first time, can help us to infer

drug’s ATC-codes. It is particularly useful when chemical struc-

ture information is insufficient. Furthermore, the improvement

can be expected by combination of these two important infor-

mation sources.

3.2 Correlation analysis shows the usefulness of chemical

structure and drug-target interactions

We collect two data sources to depict drugs: chemical structure

and target proteins. As the first step, we confirm each data

source is predictive to ATC-codes, i.e. drugs with similar struc-

tures or target proteins tend to be annotated with similar ATC-

codes. To show this, we correlate chemical structure similarity

and target proteins similarity with ATC-code similarity, respect-

ively. The ATC-codes similarity is calculated by the maximal

ATC-code similarities for multiple annotations (Zhao and Li,

2010).

Pearson’s correlation coefficients (PCCs) between chemical

structure, drug-target network similarity and ATC-code similar-

ity are shown in Figure 3. Besides all drug pairs, we also draw

the PCCs between chemical structure similarity, target protein

similarity and ATC-code similarity among drug pairs when their

chemical structure similarity and target protein similarity larger

than 0.5 and 0.8. Figure 3 demonstrates that, on all four datasets,

PCCs are increasing when the drug similarities increase. Both

PCCs from chemical structure similarity and target protein simi-

larity reach their largest values when drug similarities are larger

than 0.8. In addition, PCCs between chemical structure similarity

and target protein similarity are larger than 0.4 for all the four

datasets. The PCCs between target protein similarity and ATC-

code similarity are consistently larger than that between-chemical

structure similarity and ATC-code similarity. That is, both

chemical structure similarity and target protein similarity

correlate with the ATC-code similarity significantly, and, more-

over, ATC-code similarity correlates better with target protein

similarity.

In addition, we correlate the similarities obtained from two

data sources with the topology parameters of the known drug

and ATC-code interaction network. We define two drugs’ dis-

tance in the network as the length of their shortest path in the

drug and ATC-code interaction network. We plot the

Fig. 3. Barplots of the PCCs of ATC-code similarity with the chemical structure similarity (the left subfigure) and target protein similarity (the

right subfigure). The corresponding P-values are51e-2 when the PCCs between chemical structure, target protein and ATC-code similarity are40.8.

Other P-values are near zeroes

Fig. 2. The motivation of our NetPredATC is illustrated by a proof-of-

concept example. Chemical structure similarity between D02070 and

D01297 is 0.25, which is relatively low and indicates that two drugs are

not similar in structure. However, these dissimilar drugs share the

common protein target: Muscarinic acetylcholine receptor. Moreover,

they share the common ATC code: A02BX03. Therefore, two drugs

dissimilar in chemical structure share common ATC-code (A02BX03)

owing to the evidence that they interact with common target protein

(‘Muscarinic acetylcholine receptor M1’)

1320

Y.-C.Wang et al.

 at U
niversity of K

ansas on June 4, 2013
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://www.genome.jp/tools/simcomp/
http://bioinformatics.oxfordjournals.org/


distributions of chemical structure and target protein similarity

scores with respect to drugs’ distance in enzyme, ICs, GPCRs

and NRs networks, respectively, in Supplementary Figure S1. As

the similarity scores are close to zeroes when the corresponding

distances are larger than 2 for all four datasets, we only show the

similarity distributions with respect to ‘distance 2’ group in

Supplementary Figure S1, which means that we focus on the

drugs with common ATC-codes.

Supplementary Figure S1 shows that both chemical structure

similarity and target protein similarity are larger than 0.8 for

about �75% drug pairs sharing common ATC-codes. That is,

two drugs sharing common ATC-codes tend to have larger

chemical structure and target protein similarities. It suggests

that drug pairs with similar chemical structure, or target protein,

tend to be annotated with the same ATC-code. Thus, both chem-

ical structures and target proteins are predictive for ATC-code

annotation. In addition, the number of drug pairs with high

target protein similarity (40:8) are more than the number of

drug pairs with high chemical structure similarity (40:8) when
counting in all drug pairs with common ATC-code. This fact

indicates that the drugs with common ATC-code tend to have

target protein similarity than chemical structure similarity, and

target protein information may have better coverage in ATC-

code prediction.

3.3 Drug-target interactions are more predictable than

chemical structures in ATC-code prediction

In this subsection, we compare the usefulness of chemical struc-

tures and target proteins in ATC-code prediction. The perform-

ance is evaluated and visualized by ROC curves (Gribskov and

Robinson, 1996). We note that the training negative dataset is

constructed only in the training process, and the validation is

done with the assumption that all non-interacting drug ATC-

code pairs are negative examples.
First, we show the performance of chemical structure and

target protein in uncovering the experimentally observed drug

and ATC-code interactions. We replace the drug similarity

matrix Scomp in kernel function (3) with Schem and Sinter, respect-

ively. The ROC curves obtained by chemical structure and target

proteins are drawn in Figure 4. The corresponding evaluation

criteria, AUC, Acc, Sn, Sp and Pre are listed in Table 1 when the

corresponding F-measure reaches its maximum.
From Figure 4 and Table 1, we can see that Chem obtains

AUC score beyond 0.78 on all four datasets. That is, chemical

structure is useful in ATC-code prediction. Moreover, target pro-

tein plays a more important role in predicting drug’s ATC-codes.

For all four datasets, Inter outperforms Chem with much higher
Acc, Pre and F-measure and obtains �3% improvement in ac-
curacy. In addition, Inter improves Sn by42%. This result dem-

onstrates that more experimentally observed ATC-codes of drugs
can be uncovered by applying target proteins to characterize

drug similarity.
All these results suggest that each data source will do one’s

bit to infer drug’s potential ATC-codes. Therefore, combination

of these two data sources should produce a much more sophis-
ticated picture.

3.4 Data integration improves prediction

In the previous subsection, each data source demonstrates its

usefulness in uncovering the experimentally observed drug
ATC-codes. In the following, we validate the effect of combining
the two data sources in predicting drug’s ATC-codes. The

performance of data integration method, ChemInter, is evalu-
ated and visualized by ROC curves (Fig. 4) and other criteria

(Table 1).
Figure 4 shows that, except for NRs dataset, ChemInter

obtains the highest true positive rate when false positive rate

is 50.1. That is, ChemInter can achieve better accuracy when
predicting a small fraction of drug ATC-code interactions.

Table 1 shows that ChemInter performs better than using
single data source for all four datasets. For example in
Enzymes dataset, Chem and Inter make the AUCs 0.805 and

0.836, respectively, whereas ChemInter obtains an AUC 0.841.
For NRs dataset, Chem and Inter obtain Sns 0.715 and 0.736,

respectively, whereas ChemInter obtains an Sn of 0.726, which is
lower than Inter. However, Chem and Inter obtain Pres 0.701
and 0.723, respectively, whereas ChemInter obtains an Sn of

0.775, which is much higher than Inter and Chem. This fact
again demonstrates that chemical structure and target protein

similarity are useful in ATC-code prediction. Their combination
obtains significant improvement.

3.5 Comparison with SuperPred

As we mentioned, Duntkel et al. proposed a computational

method to assign drug’s ATC-codes (Dunkel et al., 2008). In
their work, only drug chemical structure was used underlying
the basic assumption that similar compounds belong to the

same ATC-group (Dunkel et al., 2008). To calculate the similar-
ity between two drugs, their structural fingerprints, generated by

Chemistry Development ToolKit (CDK) (http://almost.cubic.
uni-koeln.de/cdk/), were used, and the similarity was determined
by the Tanimoto coefficient. It is similar with SIMCOMP

Fig. 4. ROC curves for the methods using different data sources to predict ATC-codes for drug with enzymes, ICs, GPCRs and NRs targets. Chem

denotes the case when only drug chemical structure data are used, Inter denotes the case when only drug-target network data are used and ChemInter

denotes the case when the two data sources are integrated
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algorithm (Hattori et al., 2003) used in our implementation,

which is a graph-based method for comparing chemical

structures.
Our NetPredATC is conceptually different with SuperPred by

introducing drug-target network in ATC-code prediction. In

addition, we performed a side-by-side comparison with

SuperPred on predictive results. We found that our method

NetPredATC outperforms SuperPred in terms of accuracy by

considering drug target information. We took the GPCRs data-

set as an example. Specifically, we submitted the drug’s name in

SuperPred server (http://bioinformatics.charite.de/superpred),

got the corresponding ATC-codes and then calculated the

predictive accuracy. As a result, 215 drug ATC-code annotations

have been predicted correctly among the total 300 drug ATC-

code predictions. The accuracy of SuperPred is 0.716. Our

method obtains an accuracy of 0.73 by using protein target in-

formation alone. When integrating the chemical similarity with

target information, our method further improves the accuracy to

0.74. The results again show that target proteins play an import-

ant role in drug’s ATC-code prediction. This provides additional

supports for the efficiency of NetPredATC.
Our accuracy with chemical structure information alone is

0.678 in Table 1, which is slightly smaller than SuperPred’s

0.716. This difference arises from the different ways to calculate

drug’s chemical similarity. CDK is better than SIMCOMP owing

to the fact that physiochemical properties are included.
Next, we list some examples to highlight our advantage by

introducing drug target information. We specifically focus

on the successful predictions by NetPredATC while failed

by SuprePred. By introducing the target information,

NetPredATC correctly identifies 219 drug ATC-codes, and

four of them cannot be predicted by SuperPred. Specifically,

drug D05740 is annotated by ATC-code N02CC04, drug

D00480 is annotated by ATC-code D04AA10, drug D02884 is

annotated by ATC-code R03DA10 and drug D00059 is anno-

tated by ATC-code N04BA04. We check the data and find that

these ATC annotations are borrowed from the drugs with similar

target proteins but dissimilar chemical structures, similar to the

example illustrated in Figure 2. These predictions demonstrate
that our implementation necessitates a clear benefit in replacing

SuperPred.

3.6 Novel predictions

We find that NetPredATC displays its excellent performance in
discovering experimentally observed ATC-codes of drugs. To
test whether it can produce biologically useful predictions, we

focus on the unlabeled drug ATC-code pairs. We trained
NetPredATC on the gold-standard positive dataset and ran-
domly selected negative dataset from the unlabeled pairs and

tested it on the remaining drug ATC-code pairs. Our expectation
is that NetPredATC can discover the missing drugs ATC-codes.

The top five predicted interactions on Enzyme, ICs, GPCRs and
NRs datasets are listed in Table 2 and Supplementary Tables
S2–S4, respectively. For each drug and ATC-code pair in these

tables, we check out their annotation information from
DrugBank (Wishart et al., 2008) and World Health

Organization Collaborating Centres (WHOCC) (http://www.
whocc.no/atc_ddd_index/) databases. We further check the
drug and its ATC-code annotations form Wikipedia (http://en.

wikipedia.org/wiki/Main_Page) and finally analyzed the reliabil-
ity of predicted ATC-codes.
For Enzyme dataset, D00969 is annotated as ‘Meloxicam’ and

is a non-steroidal anti-inflammatory drug (NSAID) with anal-
gesic and fever reducer effects. M01AB08, annotated as

‘Etodolac’, belongs to a class of drugs called NSAIDs.
Moreover, the target of D00969 is prostaglandin G/H synthase
2 (HSA:5743), which is also the target of D00315, and D00315

has the ATC-code M01AB08. Therefore, the relationship be-
tween D00969 and M01AB08 may exist with high probability.

The descriptions of the remaining four novel predictions are pre-
sented in the Supplementary Material.
The top five novel predictions on ICs, GPCRs and NRs data-

sets are listed in Supplementary Table S2–S4, the explanation of
corresponding predictions is presented in the Supplementary
Material. Database search, literature search and functional anno-

tation analysis support these novel predictions. All these results

Table 1. Performance comparison of different data sources to predict drug’s ATC-codes

Dataset Methods AUC Acc Sn Sp Pre F-measure

Enzymes

Chem 0.805 0.709 0.719 0.699 0.705 0.709

Inter 0.836 0.765 0.731 0.799 0.783 0.763

ChemInter 0.841 0.765 0.731 0.799 0.784 0.764

ICs

Chem 0.783 0.702 0.608 0.797 0.750 0.690

Inter 0.806 0.730 0.669 0.797 0.767 0.727

ChemInter 0.816 0.740 0.686 0.797 0.771 0.737

GPCRs

Chem 0.765 0.678 0.660 0.696 0.685 0.677

Inter 0.808 0.730 0.763 0.696 0.715 0.728

ChemInter 0.816 0.741 0.686 0.796 0.771 0.737

NRs

Chem 0.792 0.705 0.715 0.694 0.701 0.705

Inter 0.811 0.747 0.736 0.694 0.723 0.747

ChemInter 0.844 0.757 0.726 0.789 0.775 0.756

The best predictions are highlighted in bold.
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suggest that NetPredATC can uncover potential ATC-codes for

drugs. It can provide low-resolution predictive results for further
high-resolution biological experiments.

4 DISCUSSIONS AND CONCLUSION

In this article, we propose a new computational method,

NetPredATC, to infer drug’s ATC-codes by integrating its chem-
ical structure and target protein data. Our main contributions are

both in characterizing the drug similarity profiles by drug-target

network and in constructing data integration model by kernel
method.

Specifically, we characterize the drug similarity not only form
chemical structures but also from target proteins. By treating

ATC-code prediction as a binary classification problem, a
SVM-based predictor is used to uncover unknown ATC-codes

for drugs. The improvement is achieved by incorporating target
protein information on four benchmark datasets. Our method

outperforms the existing chemical structure-only based method

and can accurately uncover more experimentally observed drug
ATC-codes. In addition, the database search and functional an-

notation analysis support our novel predictions. Taken together,
these rigorous validations imply that our method can identify

drugs’ potential ATC-codes in an accurate way.
We improved the predictive performance by characterizing

drugs’ target protein sequence similarity. The improvement is
robust to the definition of protein sequence similarity. We tried

different cut-offs to measure protein sequence similarity (0.2, 0.3,

0.4 and 0.5). The results are summarized in Supplementary Table
S5 and Supplementary Figure S2. We found that the AUC score

is slightly lower when using a more stringent cut-off, but not too
much. This is because most of sequence similarity among drug

target is actually low in our datasets to avoid obvious predic-
tions. One advantage to introduce target protein information is

to fully use the indirect neighbor information in drug ATC-code

annotation network. It allows us to predict drug’s ATC-code
when this drug has low chemical similarity and target similarity

with its closest drug. We list some novel drug ATC-code predic-
tions with low chemical similarity and target similarity in

Supplementary Table S6.
We further note that there are another ways to define drug

similarity by their protein targets. For example, drugs sharing

common targets are often similar in their side effects (Campillos
et al., 2008) and drugs targeting the same neighbor in network

show similarity in side effects (Brouwers et al., 2011). Therefore,
the closeness of target proteins in protein–protein interaction

(PPI) network appears to be a good predictor for drug side ef-
fects. Similar to the side effects prediction, drug pairs that have

similar ATC-codes may target the same neighbor in PPI net-

work. Thus, it is necessary to validate the effect of targets neigh-
borhood in ATC-code prediction. That is, we can characterize

drugs by their targets closeness in PPIs network instead of se-
quence-based similarity in future.

The training negative dataset is one key problem in SVM-based
predictor. There is still plenty room for the improvement on the

definition and selection of the training negative dataset. This is a
formidable challenge to our method and to other interaction pre-

diction methods. Since the available ATC-code annotations for

drugs is far from complete, many unknown drug and ATC-code
pairs may be actually interacting in our task. To deal with this

problem, a linear regression model can be introduced to uncover
the new ATC-codes of drugs, which can avoid the selection of

negative dataset. Specifically, the chemical structures and target

proteins are used to characterize the drug similarity profiles, and
then a linear regression model can be applied to correlate the

ATC-code similarity with drug similarity. The similar ideas
have been used to prioritize the disease genes (Jiang et al., 2011;

Wu et al., 2008). In addition, our NetPredATC was validated on
four relatively small benchmark datasets. The larger the dataset is,

the more knowledge can be learned to construct classifier, and

results are generally more reliable.
Importantly, we provide a general framework to perform data

integration, and our framework is ready to be applied to another
drug-related studies. For example, our method can be applied in

side effects prediction, which is a critical stage in drug develop-
ment. One can assess the similarity among the side effects by

some text mining approaches and define the drug similarity by
their chemical structures, target proteins or ATC-codes (Zhao

and Li, 2010). In almost similar manner, our method can predict

novel drug–disease relationships, which is also known as drug
repositioning.
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