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Abstract 

Background 

A synthetic doubled-haploid hexaploid wheat population, SynDH1, derived from the 

spontaneous chromosome doubling of triploid F1 hybrid plants obtained from the cross of 

hybrids Triticum turgidum ssp. durum line Langdon (LDN) and ssp. turgidum line AS313, 

with Aegilops tauschii ssp. tauschii accession AS60, was previously constructed. SynDH1 is 

a tetraploidization-hexaploid doubled haploid (DH) population because it contains 

recombinant A and B chromosomes from two different T. turgidum genotypes, while all the 

D chromosomes from Ae. tauschii are homogenous across the whole population. This paper 

reports the construction of a genetic map using this population. 

Results 

Of the 606 markers used to assemble the genetic map, 588 (97%) were assigned to linkage 

groups. These included 513 Diversity Arrays Technology (DArT) markers, 72 simple 

sequence repeat (SSR), one insertion site-based polymorphism (ISBP), and two high-

molecular-weight glutenin subunit (HMW-GS) markers. These markers were assigned to the 

14 chromosomes, covering 2048.79 cM, with a mean distance of 3.48 cM between adjacent 

markers. This map showed good coverage of the A and B genome chromosomes, apart from 

3A, 5A, 6A, and 4B. Compared with previously reported maps, most shared markers showed 

highly consistent orders. This map was successfully used to identify five quantitative trait loci 

(QTL), including two for spikelet number on chromosomes 7A and 5B, two for spike length 

on 7A and 3B, and one for 1000-grain weight on 4B. However, differences in crossability 

QTL between the two T. turgidum parents may explain the segregation distortion regions on 

chromosomes 1A, 3B, and 6B. 

Conclusions 

A genetic map of T. turgidum including 588 markers was constructed using a synthetic 

doubled haploid (SynDH) hexaploid wheat population. Five QTLs for three agronomic traits 

were identified from this population. However, more markers are needed to increase the 

density and resolution of this map in the future study. 
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Background 

Many important crops such as bread wheat, durum wheat, cotton, oat, coffee, and tobacco are 

allopolyploids. They originated from the merger of two or more distinct but related genomes, 

by interspecific hybridization and then genome doubling. Because the majority of accessions 

of ancestral species were not involved in speciation, many of their unique genes may not 

present in crops [1,2]. Thus unraveling the genes coding for agronomically-important traits in 

ancestral species is important for crop improvement. The differences in polyploid levels 

between a crop and its ancestral species may cause differences in gene expression, especially 

for a quantitative trait locus (QTL). Therefore, genetic populations with the same ploidy level 

as a given crop are needed to analyze ancestral genes for crop improvement; however their 

construction is labor-intensive and time-consuming. 

We recently developed a method for synthesizing doubled haploid (SynDH) populations 

specific for allopolyploid species [3]. Triticum turgidum L. (2n = 4x = 28, AABB) and 

Aegilops tauschii Coss. (2n = 2x = 14, DD), the two ancestral species of common wheat 

(Triticum aestivum L., 2n = 6x = 42, AABBDD), were used to demonstrate the method. 

Unlike existing methods for producing DH populations, this method eliminates the need for 

in vitro culture for extracting haploids and/or chemical treatment for chromosome doubling. 

Moreover, genetic recombination at the hexaploid level can be restricted to the D genome 

(thus called diploidization-hexaploid SynDH) or A and B genomes (tetraploidization-

hexaploid SynDH), making genetic analysis simpler [3]. However, the effects of applying 

such a strategy to the construction of genetic maps are not clear. 

The objectives of this study were to (i) develop a genetic map of the A and B genomes based 

on DArT (Diversity Arrays Technology), SSR (simple sequence repeat), ISBP (insertion site–

based polymorphism), and high-molecular-weight glutenin subunit (HMW-GS) markers 

using a tetraploidization-hexaploid SynDH population, (ii) assess the extent of segregation 

distortion, (iii) evaluate the quality of linkage maps constructed using this strategy by 

comparing with previously reported maps, and (iv) identify QTLs in this population. 

Results 

Construction of genetic map and QTL analysis 

Although this SynDH population was derived from the cross of three parents 

(LDN/AS313//AS60), all of the D chromosomes came from the single genotype AS60. Thus, 

segregation of this population was restricted to the A or B chromosomes, which came from 

the two different tetraploid parents, T. turgidum AS313 and LDN. Therefore, polymorphic 

markers between the two T. turgidum parents can be used in genetic mapping. A total of 606 

polymorphic markers between T. turgidum AS313 and LDN were identified, including 521 

DArT, 81 SSR, two ISBP, and two HMW-GS markers. These markers were used to genotype 

the SynDH population. 



Of the 606 markers, 588 (97%) were included in the genetic map. They included 513 DArT 

(98%), 72 SSR (89%), one ISBP, and two HMW-GS markers (Table 1). These markers were 

assigned to 24 linkage groups on 14 chromosomes, giving a total map length of 2048.79 cM 

(Table 1). This map showed good coverage of the A and B genome chromosomes, apart from 

3A, 5A, 6A, and 4B (Figure 1, 2). Map length of the A genome (796.18 cM) was shorter than 

that of the B genome (1252.61 cM). Chromosomes 1A, 3A, 4A, 1B, 2B, 5B, 6B, and 7B were 

each represented by a single linkage group, while 2A, 5A, 6A, 7A, 3B, and 4B were each 

represented by two or more linkage groups (Figures 1, 2). The average length of these linkage 

groups was 146.34 cM, with a maximum of 263.48 cM, for 2B, and a minimum of 32.90 cM, 

for 4B. The average distance between markers on these linkage groups ranged from 1.12 cM 

for 6A to 5.95 cM for 7B. The overall average was 3.48 cM between any two markers across 

the linkage map (Table 1). 

Table 1 Marker distribution on A- and B-genome chromosomes 
  Number of target markers Average Mean 

Chromosome Length (cM) SSR ISBP DArT Glutelin Total length density** 

    wPt tPt rPt   cM/marker  

1A 183.61 5 - 48 4 0 Glu-A1 58 (13)* 3.17 7.06 

2A 141.23 4 - 28 2 0 - 34 (0) 4.15 7.06 

3A 39.21 0 - 10 0 0 - 10 (3) 3.92 9.80 

4A 181.61 4 - 40 0 3 - 47 (1) 3.86 5.86 

5A 56.01 0 - 11 2 0 - 13 (0) 4.31 7.00 

6A 74.17 4 - 57 4 1 - 66 (0) 1.12 3.53 

7A 120.34 4 - 20 0 0 - 24 (1) 5.01 6.69 

A genome 796.18 21 - 214 12 4 1 252 (18) 3.16 5.94 

1B 187.43 8 - 42 1 0 Glu-B1 52 (2) 3.60 6.25 

2B 263.48 4 - 54 2 2 - 62 (3) 4.25 7.53 

3B 241.31 16 1 71 3 1 - 92 (16) 2.62 4.64 

4B 32.9 0 - 9 0 0 - 9 (1) 3.66 8.23 

5B 185.53 10 - 26 1 1 - 38 (1) 4.88 7.42 

6B 181.18 9 - 43 3 1 - 56 (28) 3.24 6.47 

7B 160.78 4 - 22 0 1 - 27 (1) 5.95 8.46 

B genome 1252.61 52 1 267 10 6 1 336 (52) 3.73 6.29 

Total 2048.79 72 1 481 22 10 2 588 (70) 3.48 6.13 

*Number of markers with segregation distortion is shown in parentheses 

**the mean density equal to L/(n-1) where n is the number of unique markers per 

chromosome length L 

Figure 1 Genetic linkage map of A genomes obtained using 113 doubled-haploid lines 

from the AS313/LDN//AS60 population. Numbers in parentheses indicate the number of 

markers that are not present at each locus. Segregation distortion of markers are indicated by 

asterisks at significance levels of 0.05 (*), 0.01 (**), 0.005 (***), 0.001 (****), 0.0005 

(*****), and 0.0001 (******). The black arrow indicates the point of separation between two 

different linkage groups. The scales on the left indicate distances in centiMorgans (Kosambi) 

Figure 2 Genetic linkage map of B genomes obtained using 113 doubled haploid lines 

from the AS313/LDN//AS60 population. Numbers in parentheses indicate the number of 

markers that are not present at each locus. Segregation distortion of markers are indicated by 

asterisks at significance levels of 0.05 (*), 0.01 (**), 0.005 (***), 0.001 (****), 0.0005 

(*****), and 0.0001 (******). The black arrow indicates the point of separation between two 

different linkage groups. The scales on the left indicate distances in centiMorgans (Kosambi) 



A total of five QTLs were identified in this population. Two QTLs, located on chromosomes 

7A and 5B, were for spikelet number (Table 2). These two QTLs explained 19.2% and 10.2% 

of the phenotypic variance, respectively. Two QTLs, on 7A and 3B, for spike length 

explained 19.3% and 15.1% of the phenotypic variance, respectively. The final QTL, on 4B, 

for 1000-grain weight explained 14.6% of the variance. 

Table 2 Putative QTLs detected in the SynDH population 

Trait QTL Marker interval LOD score R
2
 (%)

a
 Estimated 

additive effect
b
 

Spikelet number QSpn.scau-7A wPt-4731- 

Xgwm130 

6.08 19.22 −0.50 

 QSpn.scau-5B wPt-730009- 

Xwmc28 

3.32 10.18 0.36 

Spike length QSl.scau-7A wPt-4731- 

Xgwm130 

5.53 19.26 −0.49 

 QSl.scau-3B Xgwm389- wPt-

7225 

4.48 15.13 −0.44 

1000-grain 

weight 

QTgw.scau-

4B 

wPt-7233- wPt-

5559 

3.80 14.58 1.72 

a
 Percentage of phenotypic variation explained by each QTL 

b
 indicates a positive or negative effect from the AS313 allele 

Segregation distortion 

Of the genotypic data collected in this study, 49.8% of the alleles in the SynDH population 

were derived from AS313, 46.1% were from LDN, and the remaining 4.1% was missing data. 

The overall allele ratio between those from AS313 and LDN was not significantly different at 

a significance level of 5%. However, significant deviation was found for 70 (11.90%) out of 

the 588 markers. Of these, 28 (4.7%) were in favor of LDN and 42 (7.1%) were in favor of 

AS313 (Table 1; Figure 1), consisting of seven (9.72%) SSR and 63 (12.9%) DArT markers. 

These distorted markers were distributed on 11 of the 14 chromosomes (Figure 1, 2; Table 1). 

Among them, 13 were on chromosome 1A, 16 were on 3B, and 28 were on 6B. All of the 

distorted markers on 3B favored LDN alleles, while all of the 28 distorted markers on 6B 

favored AS313 alleles. Of the 13 distorted markers on 1A, ten favored AS313 alleles and the 

other three (wPt-6654, wPt-5577, and wPt-8245) favored LDN alleles (Figure 1). 

Map comparisons 

To evaluate the quality of the genetic map developed in this study (SynDH1), locations of the 

shared markers were compared with those in the CIMMYT integrated map (CIMMYT) [4], 

durum wheat integrated map (C-L) [5], and triticale genetic map (S-M) [6]. Discrepant 

marker orders were observed in some regions, mostly on chromosomes 1A and 2A. The order 

of the majority of shared markers was highly consistent among these four linkage maps (see 

Additional file 1). The comparison of chromosome 3B with the four linkage maps is shown in 

Figure 3. Furthermore, the genetic map of chromosome 3B from this study was also highly 

consistent with its physical map (Figure 3) [4-7]. 

Figure 3 Comparison of chromosome 3B maps. The SynDH1 map (SynDH1-3B) obtained 

in this study was compared with the physical map (physical-3B) [7], the CIMMYT-integrated 



map (CIMMYT-3B) [4], the durum wheat integrated map (C-L-3B) [5], and triticale genetic 

map (S-M-3B) [6]. The scales on the left side indicate distances in cM (Kosambi). The black 

arrow indicates the point of separation between two different linkages. To reduce complexity, 

only markers shared between these maps are shown. Map comparison was performed using 

the JoinMap 4.0 program [44] 

Discussion 

The SynDH1 population used in this study was derived from the interspecific hybridization 

of T. turgidum with Ae. tauschii, followed by spontaneous chromosome doubling [3]. We 

demonstrated in this study that such a population can be effectively used to generate genetic 

maps. This map has been successfully used to locate high-molecular-weight glutenin subunits 

on loci Glu-A1 and Glu-B1, and to identify five QTLs of three agronomic traits. However, 

this study identified as many as 24 linkage groups, which is significantly larger than the 

number of the 14 haploid chromosomes of the A and B genomes. To reduce the number of 

the linkage groups, additional markers are needed for a better covered, high-density map. 

Low map coverage, duplicated marker loci, or segregation distortion can cause inconsistent 

marker order in genetic maps [8]. Chromosome rearrangements (such as small translocations, 

deletions, and inversions) can also result in marker inconsistency [8]. Compared to previously 

reported CIMMYT integrated map (CIMMYT) [4], durum wheat integrated map (C-L) [5], 

and triticale genetic map (S-M) [6], discrepant marker orders were observed in some regions, 

mostly on chromosomes 1A and 2A. According to the marker order in the genetic maps of 

these two chromosomes (see Additional file 1), these discrepancies appear to have been 

caused by chromosome inversions. In a recently reported genetic map for triticale, deletion of 

a fragment of chromosome 1A and translocation of 2A caused discrepancies in marker 

positions and order across populations [6]. 

Segregation distortion is a common phenomenon that can be influenced by factors affecting 

fertility of either gametes or zygotes [9]. Environmental effects also affect segregation 

distortion and are assumed to influence gametophyte selection [10]. Compared with F2 and 

DH, RILs (recombinant inbred lines) are more prone to segregation distortion because of 

repeated selective forces [11]. Segregation distortion markers have been reported in common 

wheat [8,12-15] and its two ancestral species of T. turgidum [16-20] and Ae. tauschii [21]. 

If a biological segregation distortion locus exists, the concerned locus and those flanking 

region would all deviate from the expected Mendelian segregation ratio [22]. Therefore, 

biological segregation distortion affects a cluster of loci that form a segregation distorted 

region (SDR). Using the criterion of Paillard et al. [13], a SDR should contain at least three 

closely adjacent loci. Based on this criterion, SDRs were only found on chromosomes 1A, 

3B, and 6B in this study (Figure 1, 2). Other distortion loci scattered along the chromosomes 

3A, 4A, 7A, 1B, 2B, 4B, 5B, and 7B were likely a result of non-biological factors. The 

limited number of the SynDH lines used could be one of these factors. 

Because all the F1 haploid hybrid plants from LDN/AS313//AS60 produced F2 doubled 

haploid plants [3], segregation distortion in the present study was most likely generated in the 

production process of the haploid hybrids by wide hybridization between T. turgidum and Ae. 

tauschii. Because no in vitro culture was applied during this interspecific hybridization 

procedure [3], its involvement in the segregation distortion can be ruled out. The production 



of conventional haploids via in vitro culture may lead to segregation distortion, because the 

ability of in vitro regeneration is genotype-dependent. When crossing T. turgidum with Ae. 

tauschii, different alleles of crossability QTL between LDN and AS313 may affect 

segregation differently. It is known that crossability genes control the ability of crossing 

between different species, and affect the seed-setting of interspecific crosses [23,24]. 

Crossability can be promoted by recessive alleles and inhibited by dominant alleles. The 

inhibiting effect of chromosome 6B [25] and the promoting effect of 3B [26] on crossability 

in LDN may cause marker segregation favoring AS313 on 6B and LDN on 3B (Figure 2). 

Because Xgwm626 and Xbarc79 on chromosome 6B gave the most severe segregation 

distortions, and their flanking markers were all less skewed, the crossability QTL may be 

situated between these two markers. Likewise, a QTL affecting segregation may also exist 

near wPt-6945 on 3B. The distorted segregation favoring AS313 near wPt-3836 on 1A 

suggests that this genotype may have a recessive crossability QTL in this region [27]. These 

results suggest that the distorted segregation in the SynDH population depends on variations 

in crossability alleles between the two T. turgidum parents. In this regard, genotypic effects 

on crossability need to be considered when using SynDH populations for genetic mapping. 

Conclusions 

A genetic map of T. turgidum including 588 markers was constructed using a synthetic 

doubled haploid (SynDH) hexaploid wheat population, derived from the interspecific 

hybridization of T. turgidum with Ae. tauschii, followed by spontaneous chromosome 

doubling. This map has been successfully used to locate high-molecular-weight glutenin 

subunits on loci Glu-A1 and Glu-B1, and to identify five QTLs of three agronomic traits. 

However, more markers are needed to increase the density and resolution of this map in the 

future study. Moreover, the distorted segregation in the SynDH population may be caused by 

variations in crossability alleles between the two T. turgidum parents. In this regard, 

genotypic effects on crossability need to be considered when using SynDH populations for 

genetic mapping. 

Methods 

Plant material 

Plant materials used in this study included 113 synthesized doubled haploid (SynDH) lines 

and their parents, T. turgidum ssp. turgidum line AS313 and ssp. durum line Langdon, and 

Ae. tauschii ssp. tauschii accession AS60. The procedure of SynDH was described previously 

by Zhang et al. [3]. Briefly, the F1 hybrids between AS313 and LDN were pollinated by 

AS60. No embryo rescue technique or hormone treatment was applied during this 

interspecific hybridization procedure. The haploid interspecific hybrids were self-pollinated 

and SynDHs were produced by spontaneous chromosome doubling with the help of 

unreduced gametes [3]. This SynDH population has recombinant A and B chromosomes 

between T. turgidum lines AS313 and LDN in a background of non-recombinant D 

chromosomes from Ae. tauschii AS60. 

Field trials and trait evaluation 

Field trials were conducted in the crop season of 2010–2011 at the Triticeae Research 

Institute experimental station in Wenjiang, Sichuan Province, China. Individual plants of the 



113 SynDH lines were spaced 10 cm apart within 2 m long rows, and the row spacing was 30 

cm. This experiment consisted of two replicates. Five agronomic traits (plant height, tiller 

number per plant, spike length, spikelet number, and 1000-grain weight) were evaluated from 

10 random selected plants from each plot at maturity. Plant height (HT) was calculated as the 

average height in centimeters measured from the soil surface to the tip of the spike (awns 

excluded). Spike length (Sl), spikelet number (Spn), and 1000-grain weight were measured 

on 10 selected spikes from one line (usually the main spike per plant was chosen). Kernels 

from a sample of 10 spikes from each plot were threshed, counted, and weighed to calculate 

1000-grain weight. 

HMW-GS markers 

Two high-molecular-weight glutenin subunit (HMW-GS) loci, Glu-A1 on 1AL and Glu-B1 

on 1BL, were used for mapping [3]. 

SSR, ISBP, and DArT genotyping 

A bulk leaf sample from five plants for each of the SynDH lines and parents was used for 

DNA isolation using the 2 × CTAB method [28]. Fifty-nine ISBP (insertion site-based 

polymorphism) markers [7], and 539 SSR markers including 195 wmc [29,30], 159 gwm [31], 

113 barc [32], 49 gpw [33], 12 gdm [34], 8 cfd [35], 2 cfa [33], and 1 psp [36] were selected 

to screen the parents. PCR amplifications were performed as described by Zhang et al. [3]. 

The amplified fragments were separated by electrophoresis on 6% polyacrylamide denaturing 

gels and visualized using the silver-staining method [37]. 

Genomic DNA from SynDH lines and their parents was sent to Triticarte (Yarralumla, 

Australia) for profiling using Diversity Arrays Technology (DArT) [38,39]. The common 

wheat PstI (TaqI) v3.0 DArT array, which comprises 19,000 clones, was used. Of these 

clones, about 7000 are known to be polymorphic in a wide range of wheat cultivars, and 

about 3500 markers have been assigned to chromosomes using nulli-tetrasomic lines derived 

from Chinese Spring. Hybridization of genomic DNA to the DArT array, image analysis, and 

polymorphism scoring were carried out as previously described by Akbari et al. [40]. DArTs 

are biallelic dominant markers. Each marker is scored for each sample: 0, 1, or -, where “-” 

indicates that the marker could not be reliably scored for that sample. DArT calls were 

converted into “A” (AS313), “B” (LDN), and “-” (missing data) by comparison against 

parental scores. 

Map construction 

Segregation data were analyzed with QTL IciMapping v3.1 [41], and markers were grouped 

using a logarithm of odds (LOD) >5. The markers within each group were then ordered with 

RECORD [42] and rippled with SARF (sum of adjacent recombination frequencies). The 

marker order was used to sort markers within linkage groups and graphical genotypes were 

examined in Excel 2003 (see Additional file 2). At this step, singletons (a single locus in one 

progeny line that appears to have recombined with both of its directly-neighboring loci) were 

replaced by missing values in the dataset and calculations were repeated until no singletons 

were found. Ungrouped (not corrected data) markers were anchored to previous linkages 

using a LOD >4.5. All calculations were repeated for new linkage groups. Independent 

linkages on the same chromosomes with Kosambi distances [43] between subsequent 

markers below 50 cM were integrated as one linkage group. The χ
2
 analysis, map drawing, 



and map comparison were performed using the JoinMap 4.0 program [44]. A χ
2
 goodness of 

fit analysis for each marker was performed to test for deviation from the 1:1 expected 

segregation ratio in doubled haploids at a 5% level of significance. 

QTL analysis 

QTL IciMapping v3.1, based on the inclusive composite interval mapping (ICIM) model 

[41], was used for QTL analysis. Threshold values were calculated using 1,000 permutations 

and QTLs were considered real when ICIM showed the presence of a significant peak at a 

level of 0.05. Estimates of the positions of QTL corresponded to the peak of the ICIM scans. 

The percentage of phenotypic variation explained by each QTL was calculated with a single 

factor regression (R
2
). 
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Additional file 1. Map comparison of A and B genome chromosomes between SynDH1 (this 

study) and the CIMMYT-integrated map (CIMMYT) [4], the durum wheat integrated map 

(C-L) [5], and the triticale genetic map (S-M) [6]. The scales on the left indicate distances in 

cM (Kosambi). To reduce complexity, only markers shared between these maps are shown. 

Map comparison was performed using the JoinMap 4.0 program [44]. 
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Additional file 2. Marker information used for linkage group construction. 
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