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Increasing evidence suggests that geological or climatic events in the past promoted allopatric speciation of alpine
plants in the Qinghai-Tibetan Plateau and adjacent region. However, few studies have been undertaken to examine
whether such allopatric divergences also occurred within a morphologically uniform species. In the present study,
we report the evolutionary history of an alpine shrub species, Hippophae tibetana, based on examining chloroplast
DNA (cpDNA) and nuclear ribosomal internal transcribed spacer (ITS) DNA variations. We sequenced two cpDNA
fragments (¢rnL-F and trnS-G) and the nuclear ITS region in 183 individuals collected from 21 natural populations.
Ten chlorotypes and 17 ITS types were identified. Phylogenetic analyses of both chlorotypes and ITS sequence
variations suggested two distinct lineages distributed in the eastern and western region, respectively. On the basis
of the fast and low plant substitution rates, these two lineages were estimated to have diverged from each other
between 1 and 4 million years ago, during the period of the major glaciations and orogenic processes. In addition,
ITS has undergone the accelerated evolution in two populations in the southern Himalaya isolated by the high
mountains with a surprising accumulation of the private variations. The east—west split was also supported by an
analysis of molecular variance, which partitioned around 91% of the total cpDNA variance between these two
groups of populations. A single chlorotype was found for most populations in eastern or western region, suggesting
a recent postglacial expansion within each region. Star-phylogeny and mismatch analyses of all chlorotypes within
the eastern group of populations suggested an earlier regional expansion before the Last Glacial Maximum (LGM).
The local fixture of the different chlorotypes in multiple populations suggested more than one refugia remained for
eastern or western region. Coalescent tests rejected the hypothesis that all current populations originated from a
single refugium during the LGM. Instead, they supported hypothesis that two lineages diverged before the late
Pleistocene. These findings, when taken together, suggested that this species had experienced long allopatric
divergence and recent regional range expansions in response to orogenic processes and the climate changes. The
evolutionary history of this shrub species highlights importance of geographical isolations to the intraspecific
divergence of alpine plants occurring in the world’s ruff. © 2010 The Linnean Society of London, Biological
Journal of the Linnean Society, 2011, 102, 37-50.
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INTRODUCTION

The genetic structure of the current species reflects
the interacting consequences of two fundamental
processes: population dynamics in response to the past
geological or climatic changes and species’ evolu-
tionary ability under the diverse selection (Avise,
2004). Range fragmentation, contraction, and expan-
sion therefore could have distinct genetic signature
within the current populations (Hewitt, 2000), which
can be recovered by the phylogeographic analyses. The
inferred population dynamics and distributional range
based on the genetic variations between and within the
current populations is largely congruent with those
inferred from the fossil evidence, especially in both
Europe and North America (Petit & Grivet, 2002;
Godbout et al., 2005). However, our phylogeographic
understandings of both plants and animals are still
incomplete because species occurring in the other
regions of the world have received little attention.

The Qinghai-Tibetan Plateau (QTP; the largest and
highest plateau in the world with mean altitude >
4000 m a.s.l.) is such a region. The QTP had experi-
enced considerable and rapid geological uplifts and
glaciations of large areas since the Pliocene. For
example, the QTP mountains had been extensively
uplifted several times between 1.2 and 3.6 Mya (Li,
Shi & Li, 1995). The largest glaciation in the QTP
(Naynayxungla Glaciation) started around 1.2 Mya
and reached its maximum between 0.6 and 0.8 Mya
(Shi & Ren, 1990; Zhou & Li, 1998; Zheng, Xu & Shen,
2002). After this largest glaciation, several cycles of
climatic oscillations as a result of mountainous glacia-
tions might continue to the Holocene (Shi, Li & Li,
1998). This region, especially its southeastern part,
represents one of the world’s biodiversity hotspots
(Mittermeier et al., 2005), and contains more than
20 000 species of vascular plants with numerous
endemic species (Wu, 1988; Li & Li, 1993). Phyloge-
netic analyses of the species-rich genera suggested
that most endemic species occurring there originated
in situ or adjacently and the species diversifications
were calibrated to be highly consistent with environ-
mental and/or climatic changes (Yang, Wang & Hong,
2003; Liu et al., 2006; Ran, Wei & Wang, 2006; Zhang
et al.,2009; Wang et al., 2009a). It is feasible that these
changes also resulted in the intraspecific divergences
(Avise, 2004) because numerous species survived in the
high altitude regions for a long time (Wang et al.,
2009a; Tanget al., 2010), although the others colonized
the plateau platform postglacially or interglacially
after the largest glaciation occurred there (Zhang
et al., 2005; Meng et al., 2007; Chen et al., 2008; Yang
et al., 2008; Wu et al., 2010).

In the present study, we report the evolutionary
history of Hippophae tibetana, an alpine shrub occur-

ring in the QTP and adjacent Himalayan region.
Hippophae is a small genus of the Elaeagnaceae,
comprising between five and seven species (Rousi,
1971; Bartish et al., 2002). All species of this genus
have received a great deal of attention because of
their nitrogen-fixing functions (Lian, Chen & Lian,
1998). These species are dioecious and wind polli-
nated, with gender being determined genetically
(Rousi, 1971; Lian et al., 1998; Bartish et al., 2000).
The juicy fruits are dispersed by birds (Rousi, 1971).
Hippophae tibetana diverged early from the other
species of the genus (Bartish et al., 2000, 2002; Sun
et al., 2002). This species was shown to be morpho-
logically uniform without much of intraspecific varia-
tion (Rousi, 1971). It occupies a wide range of habitats
from 2800-5000 m (Lian et al., 1998). In the present
study, we used chloroplast DNA (cpDNA) and nuclear
ribosomal internal transcribed spacer (ITS) sequence
data to examine intraspecific diversification of H.
tibetana. The cpDNA is maternally inherited in Hip-
pophae (Bartish et al., 2002) and the nuclear ITS
variation exhibits biparental inheritance (Sun et al.,
2002). The genetic variations inferred from these two
sets of molecular markers can be highly effective to
trace intraspecific differentiation of plants and their
range responses to the Quaternary changes (Wang
et al., 2009a). We aimed to address the following
questions based on range-wide population sampling:
(1) are the intraspecific divergences related to geo-
graphical distribution and did past geological changes
and climatic glaciations promote the allopatric diver-
gence of this species and (2) did this species show
range shifts in response to the Quaternary climatic
oscillations?

MATERIAL AND METHODS
POPULATION SAMPLING

We collected 183 individuals from 21 natural popula-
tions across the entire distributional range of this
species in the QTP (Fig. 1A, Table 1) from 2002—2005.
The sampled individuals within each population were
located more than 100 m apart. However, in a few
small populations with fewer than 100 individuals,
only one to five individuals were sampled. We failed to
collect sparse distributions spanning the geographical
gap between populations 7 and 8 (Fig. 1A) because
they were inaccessible during the 4 years of field as a
result of floods and road constructions. According to
the specimens collected almost 50 years ago, this
species was recorded to occur in four sites of this
region (Dingqing, Ranwu, Baqing, and Chayu). We
used silica gels to dry the collected fresh leaves imme-
diately in the field. We further collected voucher speci-
mens at the same time, which are now deposited in the
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Figure 1. A, map of the sampling sites (Table 1) and the geographic distribution of Hippophae tibetana chloroplast DNA
(cpDNA) haplotypes. Pie charts show the proportions of chlorotypes within each population. B, the network of chlorotypes
as inferred from TCS. Circle sizes are proportional to chlorotype frequencies within the total sample and small dots
indicate unidentified chlorotypes.

Herbarium of Lanzhou University. We included
the other six congeners (H. neurocarpa ssp. stella-
topilosa, H. neurocarpa ssp. neurocarpa, H. salicifolia,
H. gyantsensis, H. rhamnoides ssp. yunnanensis,
and H. rhamnoides ssp. sinensis) and one outgroup
(Elaeagnus umbellata) for phylogenetic analyses.

DNA EXTRACTION, AMPLIFICATION AND SEQUENCING

We used DNeasy™ Tissue Kit (Qiagen) to isolate total
genomic DNA in accordance with the manufacturer’s
instructions. We amplified two cpDNA fragments
(trnL-F and ¢rnS-G) and the ITS region using the
primers: trn-L: 5-CgA AAT Cgg TAg ACg CTA Cg-3’
and trn-F: 5-ATT TgA ACT ggT gAC ACg Ag-3’ (Tab-
erlet et al., 1991); trn-S: 5-gCC gCT TTA gTC CAC
TCA gC-3’ and ¢rn-G: 5’-gAA CgA ATC ACA CTT TTA

CCA C-3’ (Hamilton, 1999); and ITS1: 5-AgA AgT
CgT AAC AAg gTT TCC gTA gg-3" and ITS4: 5’-TCC
TCC gCT TAT TgA TAT gC-3’ (White et al., 1990). We
performed PCR on a GeneAmp® PCR System 9700
(Applied Biosystems) in a 25 uL reaction volume,
which contained 0.02 mmol L' dNTPs, 0.05 mmol L
of each primer, 1.0 units of TAKARA rTaqg polymerase
(Takara), Takara 10 x reaction buffer (100 mM Tris-
HCl, 500 mM KCl, 15 mM MgCl,), and 10-40 ng of
genomic DNA. The thermal cycler profile comprised
36 cycles of 94 °C denaturing for 45 s, 60 °C (¢trnL-F,
ITS) or 59 °C (¢trnS-G) annealing for 40 s, and 72 °C
extending for 60 s preceded by 5 min at 94 °C and
terminated with 7min at 72°C. PCR products
were further purified then with a TIANquick Midi
Purification Kit (Tiangen) in accordance with the
manufacturer’s instructions. Sequencing reactions
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were carried out with the same PCR primers
described above and ABI Prism Bigdye™ Terminator,
version 3.1, Cycle Sequencing Kit. Purified DNA
fragments were separated and called on an ABI
3730XL DNA Analyzer. All sequences were initially
aligned with CLUSTAL X, version 1.81 (Thompson
et al., 1997) and then refined manually. The newly
recovered sequences of H. tibetana have been depos-
ited in GeneBank under the accession numbers
HM769671-HM769721.

PHYLOGENETIC ANALYSIS

Phylogenetic analyses of both ¢cpDNA and the nuc-
lear ITS sequences were carried out by maximum-
parsimony (MP), maximum-likelihood (ML), and
Bayesian analyses using PAUP¥*, version 4.0b10
(Swofford, 2002); GARLI, version 1.0 (Zwickl, 2006);
and MrBayes, version 3.0 (Huelsenbeck & Ronquist,
2001; Ronquist & Huelsenbeck, 2003). We constructed
MP trees using a heuristic search, 100 random addi-
tions of sequences, equally weighted characters and
nucleotide transformations, with the tree-bisection—
reconnection branch swapping, MULTREES, COL-
LAPSE, and STEEPEST DESCENT options switched
on. All indels detected were coded using the simple
code method applied by the software GAPCODER
(Young & Healy, 2003), and included in the MP analy-
sis. The robustness of MP trees was estimated by
1000 bootstrap replicates. ML analysis in GARLI was
performed using random starting trees and 5 000 000
generations per search; 30 searches were performed
and the best tree saved. ML bootstrap analysis
was carried out with the same settings, using
100 replicates and with five searches per replicate.
Bayesian posterior probability (PP) values were cal-
culated by the Markov chain Monte Carlo (MCMC)
searches, which were performed, with four chains of
3 000 000 generations and trees sampled every 100th
generation when a common model GTR+I+G was
adopted. The first 10 000 trees sampled were dis-
carded as ‘burn-in’, whereas a consensus topology and
PP-values were calculated with the remaining trees
with PAUP*. For comparison, unrooted statistical
parsimony networks for all the recovered chlorotypes
and ITS types were also built using TCS, version 1.21
(Clement, Posada & Crandall, 2000). TCS was run
with default parsimony connection limit of 95%, all
indels in the sequence alignment coded as additional
single characters.

DIVERGENCE TIMES

A likelihood-ratio test (Huelsenbeck & Rannala, 1997)
was conducted to test the molecular clock hypothesis
for the cpDNA and ITS sequences of H. tibetana and

the other congeners using PAUP¥*, version 4.0b10
(Swofford, 2002). This test evaluated the hypothesis
of rate constancy by calculating the log likelihood
of the ML trees with and without the molecular
clock enforced. Because the hypothesis of a molecular
clock could not be rejected because constrained and
unconstrained analyses were not significantly differ-
ent (HKY+G, 2InLR=16.437, d.f.=15, P=0.354)
for cpDNA sequences, we then used the Bayesian
analyses to estimate the divergence times between
the western and eastern lineages with the soft-
ware BEAST (Drummond et al., 2002; Drummond &
Rambaut, 2007) under the hypothesis of the molecu-
lar clock based on the substitution rates of the chlo-
roplast sequence recovered for most angiosperm
species (L =1.0-3.0 x 10 s s7' y!; Wolfe, Li & Sharp,
1987). Following a burn-in of 500 000 steps, all
parameters were sampled once every 100 steps from
5000 000 MCMC steps. We checked convergence of
the stationary distribution by visual inspection of
plotted posterior estimates using the software Tracer
(Rambaut & Drummond, 2007), and the effective
sample size for each parameter sampled was found to
exceed 200. However, for ITS sequence data, our tests
rejected the molecular clock hypothesis (P < 0.05). We
therefore used the nonparametric rate smoothing
technique of Sanderson (1997) to estimate intra-
specific divergences based on the ITS substitution
rates ranging from 3.46 x 10 to 8.69x 10°ssty!
(Richardson et al., 2001) recorded for shrubs and
herbal plants.

POPULATION AND PHYLOGEOGRAPHIC ANALYSIS

Average gene diversity within populations (Hg), total
gene diversity (Hr), and two parameters of differen-
tiation, Ggr (coefficient of genetic variation over all
populations) and Ngr (equivalent coefficient taking
into account sequence similarities between haplo-
types) were estimated for overall populations and for
groups (identified by phylogenetic analyses) sensu
Pons & Petit (1996), using the software PERMUT
(http://www .pierroton.inra.fr/genetics/labo/Software/
PermutCpSSR). Gsr and Ngr were compared using a
permutation test with 1000 permutations. The occur-
rence of significant phylogeographic structure was
indicated by Nsr being significantly higher than Ggsr
(Pons & Petit, 1996). Hierarchical analysis of molecu-
lar variance (AMOVA; Excoffier, Smouse & Quattro,
1992) was performed to characterize the population
structure and genetic variation using ARLEQUIN,
version 3.0 (Excoffier, Laval & Schneider, 2005). Hap-
lotype diversity (Hg), nucleotide diversity (n) were
also calculated using this software.

The signature of demographic expansion was tested
by the D-test of Tajima (1989) and Fs test of
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Fu (1997). Significant D-values and large negative
Fs-values generally suggest rapid demographic
expansions (Hudson, 1990). A mismatch distribution
analysis (Schneider & Excoffier, 1999) was also con-
ducted to infer the demographic expansions of H.
tibetana. One thousand parametric bootstrap repli-
cates were used to generate an expected distribution
using a model of sudden demographic expansion
(Excoffier et al., 2005). P-values were then calculated
as the proportion of simulations producing a larger
sum-of-squared deviation than the observed. The
raggedness index of Harpending (Harpending, 1994)
of the observed mismatch distribution and its sig-
nificance were also computed to qualify the smooth-
ness of the observed mismatch distribution. All these
demographic tests were performed using ARLEQUIN,
version 3.0 (Excoffier et al., 2005). When the hypoth-
esis of sudden expansion can not be rejected, the
corresponding T value was used to infer a time scale
for the demographic expansion. To estimate ¢, we used
the relationships 1 = 2ut¢ (Rogers & Harpending, 1992;
Rogers, 1995), where ¢ is the expansion time in
number of generations and u is the mutation rate per
generation for the whole analyzed sequence. Values
for u were calculated as u =2 ukg, where p is the
substitution rate per nucleotide site per year, % is the
average sequence length of the DNA region, and g is
the generation time in years.

COALESCENT ANALYSIS AND SIMULATION

We used coalescent simulations of genealogies con-
strained within models of population divergence to
assess the fit of observed gene tree to different phy-
logeographic hypotheses (Knowles, 2001; Knowles &
Maddison, 2002; Carstens et al., 2005; DeChaine,
2008). Hypothesis testing was performed using the
software MESQUITE, version 2.5 (Maddison & Mad-
dison, 2008). Absolute time (years) was converted to
coalescent time (generations) assuming a generation
time of 5 years for a congeneric species H. rhamnoides
(Bartish, Kadereit & Comes, 2006). We used the S
statistic of Slatkin & Maddison (1989) to evaluate
whether the observed genealogies were consistent
with the given models by comparing the S value of
empirical ML genealogy and those of the simulated
genealogies.

For all coalescent simulations, effective popu-
lation size (N.) was estimated using the 6-values
calculated using the software MIGRATE, version
2.4.3 (Beerli, 2002). The search parameters were: ten
short chains of 1 000 000 steps, followed by two long
chains of 10000 000 steps; chains were sampled
every 100 steps following a burn-in of 10 000 steps,
and default settings used for the initial estimate of
theta value. The theta value was converted to N.

using the formula 6= 2N.u, with the low substitute
rate of chloroplast sequence for the woody plants
(u=1.0x10"ss'y"'; Wolfe etal., 1987) adopted.
During coalescent simulations, we set the overall N.
to equal the empirically estimated values, and con-
strained the N. of the refugial population to a size
proportional to the relative N, of the population
sampled from the site of the putative refugia.

RESULTS
CHLOROPLAST DNA

The total alignment length of the two cpDNA
sequences examined was 1482 bp. Nucleotide substi-
tution occurred at 16 sites, of which seven were
parsimony informative, and one indel with a length of
49 bp was present in the trnS-G region. Combining all
base substitutions and length variation charac-
ter states, a total of ten chlorotypes (H1-H10; see
Supporting information, Table S1) were identified
from the 183 plants analyzed. Twelve populations
(57%) were fixed for a single chlorotype, whereas the
remaining nine (43%) were polymorphic (Fig. 1A,
Table 1). Seven chlorotypes (H1-H7) were found
among populations (8-21) located in the eastern QTP,
whereas the other three (H8, H9, and H10) were
present only among western populations (1-7)
(Fig. 1A). The most dominant chlorotype (H1) among
eastern populations was fixed or present in twelve
populations (10-21). Chlorotypes H4, H5, and H7
occurred in more than two populations, whereas the
remaining three (H2, H3, and H6) were private to
populations 9, 11, and 12, respectively. In the western
distribution of the species, H8 was found to be the
most common chlorotype and very widely distributed
in six out of the total seven populations. Chlorotype
H9 was shared between populations 3 and 5, whereas
H10 occurred only in population 4.

Three phylogenetic analyses by MP, ML, and
Bayesian methods produced consistent topology
(Fig. 2A). Monophyly of the ten chlorotypes of H.
tibetana was strongly supported. Within the species,
two highly supported clades were recognized: one
consisting of H1-H7 and the other H8-H10. Chlo-
rotypes comprising these two clades were geogra-
phically distributed in the eastern and western
areas of the QTP, respectively (Fig. 1A). The cpDNA
haplotype network was congruent with the results
from the MP, ML, and Bayesian analyses, in which
the two clades were separated by six unidentified
chlorotypes (Fig. 1B). The two intraspecific lineages
of H. tibetana were estimated to have diverged
between 1.08 (95% HPD: 0.60-1.60) and 3.25 (95%
HPD: 1.77-4.82) Mya based on the fast and slow
substitution rates.
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Figure 2. Two maximum-likelihood trees based on phylogenetic analyses of (A) the chloroplast DNA (cpDNA) data
set (-InL =3185.2048) and (B) the nuclear ribosomal DNA (nrDNA) data set (-InL =2097.6013). Support values
(maximum parsinomy bootstrap/maximum likelihood bootstrap/Bayesian posterior probability) greater than 50% are

shown at nodes.

NUCLEAR RIBOSOMAL DNA

We detected 17 different ITS types (A-Q; see Support-
ing information, Table S2). The length of the align-
ment of all ITS types was 702 bp. A total of 25 base
substitutions and six different length variants (1-5 bp)
were found. Seven out of the 17 ITS types were unique
to single populations (see Supporting information,
Fig. S1A, Table S3). Eight ITS types (J—Q) were found
in western populations, whereas the remaining nine
types (A-I) were present only in eastern populations.
For eastern populations, ITS type A was found to be the
most common ITS sequence that was fixed or present
in all populations, except for populations 8 and 9. For
western populations, almost each population was fixed
for a different ITS genotype. Especially, M and N were
only found in populations 4 and 5 collected from the
southern Himalaya. Seven mutations and five indels
were only found for these two ITS genotypes (see

Supporting information, Table S2). The phylogenetic
topology based on the ITS sequences produced by MP,
ML, and Bayesian analyses was broadly congruent
with each other, which was also consistent with that
based on cpDNA sequences, although with low
support: these ITS types were grouped into two major
lineages that were geographically distributed in the
eastern and western populations (Fig. 2B; see Support-
ing information, Fig. S1A). Multiple variations private
to M and N clustered these genotypes as a sublineage
with an extremely long branch within the western
lineage. Within the eastern lineage, two sublineages
were also identified: one consisting of types A-F that
were present in populations 1-7 and the other types
G-I that occurred only in populations 8 and 9. The
divergence of these two intraspecific lineages was
estimated to range from 1.26 (95% HPD: 0.78-1.79) to
3.17 (95% HPD: 1.96-4.48) Mya based on the fast and
slow ITS substitution rates.
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POPULATION STRUCTURE AND
PHYLOGEOGRAPHIC ANALYSIS

Chlorotype diversity (Hg) within the 21 populations
was in the range 0-0.47, and nucleotide diversity (r)
in percent was in the range 0-0.06 (Table 1). The
higher mean haplotype diversity was exhibited in the
eastern group (0.61). Total genetic diversity Hr (0.782;
Table 2) across all populations was much higher than
average within-population diversity Hs (0.158) (i.e.
the majority of cpDNA diversity is distributed among
populations). Consequently, total Ngr (0.947) was sig-
nificantly larger than Gsr (0.798; P < 0.001), indicat-
ing that cpDNA variation of this species on the whole
distribution was well geographically structured
(Table 2). The hierarchical AMOVA based on chloro-
types revealed that nearly 95% of the total variation
was partitioned among populations, whereas just 5%
was within populations (Table 3). The east—west split
divergence of the species was also supported by
AMOVA, with approximately 91% of the variation
attributed to this pattern of differentiation (Table 3).
The results of demographic expansion histories tested
by different analyses are shown in the Supporting
information (Table S4). The significant D-value, large
negative Fs-value and unimodal mismatch distribu-
tions (see Supporting information, Fig. S2) of the
eastern lineage suggest a historical demographic
expansion. The time of the expansion event was esti-
mated to be 26.4-79.1 Kya.

COALESCENT ANALYSIS AND SIMULATIONS

We conducted coalescent simulations to test hypoth-
eses concerning the putative glacial refugia of H.
tibetana. First, all current populations of the species
were derived from a single refugium that was located
either at the edge or in the interior of the plateau and
present towards the end of the Last Glacial Maximum
(LGM) (approximately 12 000 years ago; Fig. 3A).
Second, the species may have survived the LGM in
two isolated refugia that gave rise to the western and
eastern lineage, respectively. We assumed that the
split between the two lineages occurred at the begin-
ning of the LGM (T2 =20 000 years ago) and the

current populations were derived, respectively, from
the two refugia at the end of LGM (T1 = 12 000 years
ago; Fig. 3B). Third, the east-west split may have
occurred early in the Pleistocene, as estimated by
genetic divergences of the ITS and cpDNA sequences,
and that all current populations are derived from
three independent refugia that existed during the
LGM (T1 =20 000 years ago; Fig. 3C). In this case,
the initial divergence of the east and west clade was
assigned to be T3 =3.0 Mya, as estimated based on
the low mutation rate (u=1.0x10"ss'y?!). We
assumed that T2 ranged from the last interglacial
period (0.12 Mya; Sangamon interglacial period) to
0.17 Mya (the beginning of Penultimate Glaciation;
Shi, 2002; Zheng et al., 2002).

We estimated 6-value based on cpDNA sequences
with MIGRATE, version 2.4.3: Oy =1.76x1073
[consistency index (CI): 9.40 x 107%-2.79 x 107%],
Owest = 1.51 x 107 (CIL: 1.89 x 1075-5.74 X 107™), Beqst =
1.24 x 1073 (CI: 4.95x 10-2.00 x 107%). On the basis
of these 0-values and assuming p=1.0x 10, each
N, was obtained: N, tota1 = 879 000, N, west = 75 500, and
Ne cast = 620 500. The model of evolution for ingroup

sequences used in the coalescent simulations
was: TIM, nA=0.3344, nC=0.1681, =G =0.1400,
nT =0.3575; rA-C=1.0000, rA-G=0.0000, rA-T=

0.4116, rC-G =0.4166, rC-T =0.3921, rG-T = 1.0000;
pinv =0. The fit of each of the three models to the
geographical genetic structures was then tested using
MESQUITE, version 2.5. The coalescent simulations
rejected the single-refugium hypothesis (P < 0.01) and
the hypothesis of two isolated refugia for the species
originating at the start of the LGM (P < 0.05) and
support that two lineages diverged before the late
Pleistocene (hypothesis C; P =0.19).

DISCUSSION
ALLOPATRIC DIVERGENCE

Phylogenetic analyses of ITS and cpDNA sequences
from all individuals showed that H. tibetana com-
prised two lineages, respectively, distributed in the
eastern and western QTP and adjacent southern
Himalaya (Figs 1, 2, Table 1; see also Supporting

Table 2. Estimates of average gene diversity within populations (Hs), total gene diversity (Hr), interpopulation differ-
entiation (Gsr), and number of substitution types (Nsr) for chlorotypes (mean + SE)

Regions Hs Hy

GST N ST

0.103 (0.0655)
0.183 (0.0534)
0.158 (0.0419)

Western group (1-7)
Eastern group (8-21)
All populations

0.405 (0.1881)
0.637 (0.1136)
0.782 (0.0574)

0.745 (0.2260)
0.712 (0.0783)
0.798 (0.0524)

0.753 (0.2160)
0.682 (0.0729)
0.947 (0.0181)

Population numbers of the two groups are shown in parentheses under ‘Regions’. A significantly larger Ngr than Gsr was

detected only in regard to ‘All populations’ (P < 0.001).
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Table 3. Analysis of molecular variance of chlorotypes and internal transcribed spacer (ITS) types for populations of

Hippophae tibetana

Fixation
Source of variation d.f. SS VvC PV (%) indices
Chloroplast DNA
Western group
Among populations 6 8.624 0.189 83.98 Fsr = 0.840%*
Within populations 47 1.691 0.036 16.02
Total 53 10.315 0.225
Eastern group
Among populations 13 33.511 0.269 66.83 Fsr =0.668*
Within populations 115 15.342 0.133 33.17
Total 128 48.853 0.402
All populations
Among populations 20 312.301 1.797 94.47 Fyr = 0.945%
Within populations 162 17.032 0.105 5.53
Total 182 329.333 1.902
Western group versus eastern group
Among groups 1 270.166 3.516 90.91 Fcr=0.909%
Among populations within groups 19 42.135 0.247 6.37 Fgc=0.701%
Within populations 162 17.032 0.105 2.72 Fgr=0.973%
Total 182 329.333 3.867
ITS
Western group
Among populations 6 220.971 4.921 95.14 Fsr=0.951%
Within populations 47 11.826 0.252 4.86
Total 53 232.796 5.173
Eastern group
Among populations 13 80.004 0.673 95.78 Fsr =0.958%
Within populations 115 3.415 0.030 4.22
Total 128 83.419 0.703
All populations
Among populations 20 638.536 3.688 97.51 Fsr=0.975%
Within populations 162 15.24 0.094 2.49
Total 182 653.776 3.782
Western group versus eastern group
Among groups 1 337.561 4.196 68.48 Fcr=0.685%
Among populations within groups 19 300.975 1.837 29.99 Fsc=0.951%
Within populations 162 15.24 0.094 1.54 Fgr=0.985%
Total 182 653.776 6.128

*P < 0.001 (1000 permutations).

SS, sum of squares; VC, variance components; PV, percentage of variation; For, correlation of haplotypes within
groups relative to total; Fsc, correlation within populations relative to groups; Fsr, correlation within populations relative

to total.

information Fig. S1, Table S3). Our estimations
further suggested that the genetic divergence
between the two intraspecific lineages of this species
occurred between 1 and 4 Mya based on the fast and
slow substitution rates of nuclear and chloroplast
DNA recorded for the other angiosperms, correspond-
ing to the middle-late Pleistocene (Zheng et al., 2002).
Hierarchical AMOVA analyses also revealed that
approximately 91% of ¢cpDNA variation was distrib-

uted between these two lineages. Coalescent simu-
lations of chlorotype variation agreed with the
phylogenetic analyses in indicating subdivision of
the species into two major lineages during the early
Pleistocene rather than during the LGM.

This allopatric divergence was also recovered for
another alpine plant species (Wang et al., 2009a) and
another animal species (Tang et al., 2010). These
divergences reflected a strong signature of highly
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All populations

(A)
West lineage East lineage
T1 T1
(B) T2

West lineage

East lineage

Figure 3. Three models used to test glacial refugia hypothesis. A, a single refuge hypothesis: all current populations were
derived from a single refugium located either at the edge or in the interior of the Qinghai-Tibetan Plateau at the end of
the Last Glacial Maximum (LGM) (T1=12 000 years BP). B, two refugia hypothesis: the two lineages split at the
beginning of the LGM (T2 = 20 000 years BP), and all current populations were derived, respectively, from two refugia at
the end of the LGM (T1 =12 000 years BP). C, three refugia hypothesis: the west-east split occurred in early Pleistocene
(T8 = 3.0 Mya) and the two sublineages of the east lineage diverged before the start of the LGM, thus three refugia were
retained during the last glacial period (T2 ranged from 120 000 to 170 000 years BP; T1 =20 000 years BP).

restricted gene flow probably posed by the geographi-
cal or climatic isolations (Avise, 2004). The estimated
timescales for the deep divergences within these three
species are highly congruent, between 1 and 1.5 Mya
if the fast evolutionary rate were, respectively,
adopted. This fits well with the orogenic processes
and glaciation events recorded for the QTP during the
middle-late Pleistocene (Zheng et al., 2002), although
caution is necessary because of the poor palaeogeo-
graphic data and fossil records. The latest extensive
uplift of the QTP started from the Late Pliocene
(3.4 Mya; Li et al., 1995; Searle, 1995; Zhong & Ding,
1996; Shi et al., 1998), and continued to approxi-
mately 1 Mya (Harrison et al., 1992; Shi et al., 1998).
The largest glacier on the plateau reached the
maximum 0.8-0.6 Mya and continued its range until
0.17 Mya after the penultimate glaciations (0.3—
0.13 Mya) (Zheng & Rutter, 1998; Zhang, Li & Bian,
2000; Shi, 2002), when an ice sheet is thought to cover
an area five to seven times larger than it does today,
and glaciers may have been retained in the high
mountains of the central QTP regions even during the
interglacial warm stages (Shi & Ren, 1990; Wu et al.,
2001; Zheng et al., 2002; Owen et al., 2005). The
rising of mountains, development of glaciers and/or
extremely low temperature in the high mountains
during these stages may have blocked gene flow
between geographically isolated populations of H.
tibetana and other species and therefore promoted
their deep intraspecific divergence.

Two populations (4 and 5) collected from the south-
ern Himalaya were geographically isolated from those
occurring in the western QTP. It is interesting that
two ITS genotypes (M and N) of these two populations
together have seven mutations and five indels private
to them, which is higher than the remaining intraspe-
cific variations recorded for the other 19 populations
(see Supporting information, Table S2). When these
private variations were included, the two genotypes
were still nested within the western ITS lineage but
with an extremely long branch (Fig.2B). Because
these two populations shared the same chlorotypes
with those occurring in the western QTP (Fig. 1A), it
is likely that warm climates and the isolation by the
high mountains accelerated the ITS evolution of these
two populations since their long-distance dispersals to
the southern Himalaya.

The factors underlying high intraspecific differen-
tiation may also have contributed rapid species diver-
sification in the QTP because the species occurring in
this region should have experienced similar evolution-
ary history. Most species-rich genera of the QTP were
found to have shown radiative species diversification
because of the fast isolations in the multiple ‘islands’
within a short time (Liu et al., 2006; Ran et al., 2006;
Wang et al., 2009¢; Zhang et al., 2009). For example,
in the genus Gentiana, the divergences among a few
species were estimated to fall within the late Pliocene
(Zhang et al., 2009). The present study, as a case
study of the intraspecific diversification provides
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further evidence that geographical isolations caused
by both orogenic processes and climatic oscillations
greatly promoted species diversification of alpine
plants in the QTP and adjacent regions.

REGIONAL EXPANSION

Two deep lineages, respectively, in the eastern and
western regions in H. tibetana suggest that the
species was subdivided into at least two separate
glacial refugia through the Pleistocene. Because all
populations of the ‘western’ lineage are completely
restricted to the high altitude (Fig. 1A), this sug-
gests that this lineage should have survived glacia-
tions at a high altitude through the Quaternary.
However, except for allopatric divergences because
of the long isolations, past climatic fluctuations
may have promoted range contraction and expan-
sion within a single region without continuous
isolations (Avise, 2004). Such large-scale range
expansions usually left two distinct genetic signa-
tures: wide distribution of a single genotype and
a dominant haplotype with multiple rare alleles
(a star-phylogeny pattern) (Avise, 1987; Hewitt,
1996, 1999, 2000; Comes & Kadereit, 1998). In
both eastern and western populations, we found
wide fixtures of a singe chlorotype. For example, H1
occurs in 12 out of 14 sampled populations in the
eastern region, and six populations were fixed for
only this chlorotype (Fig. 1A). Similarly, H8 was
fixed in seven out of the eight populations in the
western region. This distribution of genetic diversity
is in agreement with the leading-edge model: the
recolonization resulted in loss of diversity in recolo-
nized regions (Comes & Kadereit, 1998). Therefore,
we suggest that this species underwent a recent
range expansion, probably after the LGM, which
resulted in the wide fixture of the two chlorotypes,
respectively, in the western and eastern region.

In the network of chlorotypes, a star-phylogeny
pattern was detected for the eastern lineage of
H. tibetana (Fig. 1B), indicating that their origins
also resulted from a rapid range expansion (Hudson,
1990). This expansion was also supported by
strongly negative Fu’s Fgs-values, Tajima’s D-values
and unimodal mismatch distributions (see Support-
ing information, Fig. S2, Table S4). These findings
suggested a possible earlier expansion of H. tibetana
in the eastern region in addition to the recent
expansions. On the basis of a mutation rate of 1.0—
3.0x10°ss'y! and a generation time of 5 years
for a congeneric species H. rhamnoides (Bartish
et al., 2006), the estimated times of range expansion
are 26.4-79.1 Kya, before the LGM (12-20 Kya). The
period of the earlier range expansion for H. tibetana
is comparable to those inferred for the QTP endemic

Pedicularis longiflora (Yang et al., 2008) and snow
finch (Qu et al., 2005). This early expansion pro-
duced all recovered chlorotypes in the eastern range
where populations 8 and 9 were mainly fixed for
chlorotype H5, whereas populations 10 and 11 were
fixed for H7. However, chlorotype H2 was only fixed
in the population 12 and H4 was widely fixed for
populations 14, 15 and 16. Because these chloro-
types probably originated earlier than the LGM, it
is likely that at least four LGM refugia may have
retained this species in the eastern region. The
widespread distribution of H1 in the northeastern
region probably originated from the recent expan-
sion after the LGM as we noted earlier. In the
western region, populations 3 and 5 were fixed for a
different chlorotype (H9) from the remaining popu-
lations therefore two LGM refugia may have been
retained. These analyses collectively suggested that
multiple microrefugia may have been maintained for
this alpine shrub. Coalescent simulations suggested
that at least three independent refugia (one for
western lineage and two for sublineages in the
eastern region) (Fig.3) had existed. The possible
existence of multiple refugia for this species during
the LGM is also consistent with phylogeographic
studies of a few other alpine plant or animal
species occurring in the QTP (Yang et al., 2008;
Wang et al., 2009a, b; Opgenoorth et al., 2010; Tang
etal., 2010).

CONCLUSIONS

Our phylogeographic study of H. tibetana suggested
strong allopatric divergence between western and
eastern populations in this species, which might be
promoted by the orogenic processes and climate oscil-
lations during the Quaternary. This deep intraspe-
cific divergence provides further evidence for the
hypothesis that these historical events had promoted
species diversification in this region. In response to
climate fluctuations, H. tibetana may have experi-
enced at least two cycles of demographic expansions
during the Last Interglacial Period and at the end
of the LGM. The latest expansion probably resulted
in genetic homogeneity in a few populations in the
western or northeastern QTP. However, the chlo-
rotypes originated from the early expansion distrib-
uted in the different populations suggested multiple
refugia for this species during the LGM. In addition,
ITS fragment has undergone the accelerated evolu-
tion in two populations of the southern Himalaya
isolated by the high mountains. The peculiar evolu-
tionary history of this shrub species occurring in the
world’s ruff highlights importance of the Quaternary
oscillations and orogenic processes to the intraspe-
cific divergence.
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SUPPORTING INFORMATION
Additional Supporting Information may be found in the online version of this article:

Figure S1. (A) The geographic distribution of Hippophae tibetana internal transcribed spacer (ITS) types.
Unique ITS types particular to each population are presented in yellow, with their corresponding codes given.
(B) The network of ITS types as inferred from TCS.

Figure S2. Mismatch distribution analysis showing histogram of observed mismatch frequencies and best-fit
curve of the sudden expansion model. A, west lineage. B, east lineage, C, total data set.

Table S1. Variable sites of aligned sequences of two cpDNA fragments (¢(rnL-F and #nS-G) from which ten
chlorotypes of Hippophae tibetana were identified. Sequences are numbered from the 5- to the 3’- end in each
region.

Table S2. Variable sites of aligned sequences of the internal transcribed spacer from which 17 internal
transcribed spacer (ITS) types of Hippophae tibetana were identified. Sequences are numbered from the 5- to
the 3’- end.

Table S3. Frequencies of internal transcribed spacer (ITS) types, sample sizes (IN) and estimates of gene
diversity (Hg) and nucleotide diversity averaged across loci () within populations and groups. Unique ITS types
particular to each population were given under u.

Table S4. Results of Tajima’s D and Fu’s Fs tests, and mismatch analyses for Hippophae tibetana lineages
based on chlorotypes.

Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting materials
supplied by the authors. Any queries (other than missing material) should be directed to the corresponding
author for the article.
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